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Introduction

* For convenience, we focus on thermoset matrix composites
* We take as read all concerns and caveats regarding what a ‘material property’ means
* QOurinterestin this short presentation is the classic materials science relationship
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* We take as agreed that changing the raw material, e.g. fibre, fibre volume fraction,
layup, ... will change fracture toughness, both interlaminar and in-plane

e Our interest here is to consider what might be considered second-order process
effects, of which cure-cycle path dependency is an increasingly important one



Path Dependency of Interlayer Toughened Thermoset Composite
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Interlayer Morphology as a Function of Temperature Rate

(a) CC1: 0.1 °C/min (b) CC3: 1.0 °C/min (c) CC4: 7.0 °C/min

f;“{f;iit*, .
RO o8 3 T
- %’{j 8" 3o 3
A L
E-J}«Itv-.ﬂrf';ﬁ.

Fibre migration

DCRN

Research



Glass transition
of particles: 140-163° C
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Effect of Temperature Ramp Rate on G
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Process-Structure-Property Relationship for Fracture Properties
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Summary and Conclusions

What may appear as minor changes in processing conditions can significantly change
morphology, particularly in latest-generation composites.

The morphology changes can be subtle yet impact fracture and failure propagation
significantly.
So long as fracture toughness is defined broadly and completely, e.g. Mode | vs Mode

Il, initiation vs propagation, static vs dynamic, then fracture toughness is a useful
concept.

Although the work presented here focused on interlaminar toughness, clearly this
behaviour scales up to and explains in-plane fracture toughness.

We have only scratched the surface of the interactions between process and
properties, and this is becoming ever more important as we become more
adventurous and demanding of improving manufacturing.
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